Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122824, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192578

RESUMO

The increasing use of pesticides in the agriculture fields strengthen the crop production to meet the needs of increasing population. The residues in water and food materials cause several health hazards. Herein, nitrogen-doped carbon quantum dot (N-CQDs) is designed for determination of methiocarb pesticide in vegetables by fluorescent paper sensor and compared the results with fluorimetry. The fluorescent paper-based detection is performed by recording the change in fluorescence of N-CQDs with introduction of methiocarb using smartphone and ImageJ software. Good linear range was acquired for analysis of methiocarb from 10 to 1000 µgL-1 with a low detection limit (LOD) of 3.5 µgL-1 in fluorimetry; and 700-10,000 µgL-1 with a LOD of 500 µgL-1 in fluorescent paper sensor. A better recovery from 92.0 to 95.4% illustrating the selectivity of both methods for analysis of methiocarb in vegetables. Thus, the advantage of using N-CQDs as a fluorescent sensor for analysis of methiocarb in vegetables is instrument free, portable and user-friendly.


Assuntos
Metiocarb , Praguicidas , Pontos Quânticos , Corantes Fluorescentes/química , Verduras , Pontos Quânticos/química , Nitrogênio/química , Carbono/química , Smartphone , Fluorometria , Espectrometria de Fluorescência/métodos
2.
Food Chem ; 383: 132449, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183953

RESUMO

Herein, a user-friendly and portable smartphone-integrated printed-paper sensor was designed with Cu@Ag nanoparticles (NPs) for on-site monitoring of dimethoate pesticide in food samples, and the results obtained are compared with those obtained by UV-vis spectrophotometry. The working principle for identification of dimethoate pesticide is the change of yellow color NPs to reddish-yellow with associated bathochromic shift of absorption peak when pesticide introduced onto the fabricated paper or glass vial containing the NPs. A smartphone-color detector App and colorimetry were used for quantitative analysis of dimethoate in food samples. Linearity range for analysis of dimethoate using paper sensor and colorimetry were 100-2000 µgL-1 and 50-2500 µgL-1 with detection limit of 30 and 16 µgL-1, respectively. The advantages of using smartphone-integrated paper devices are rapid, instrument-free detection and economic in terms of consumption of lower amounts of NPs solution compared to other NPs-based colorimetric methods.


Assuntos
Nanopartículas Metálicas , Praguicidas , Colorimetria/métodos , Dimetoato , Prata , Smartphone
3.
J Hazard Mater ; 414: 125440, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33684821

RESUMO

We report an inkjet-printed paper based colorimetric sensor with silver nanoparticles (AgNPs) using smartphone and color detector App for on-site determination of mercuric ion (Hg2+) from environmental water samples. The AgNPs printed on Whatman filter paper (No. 1) is employed for detection of Hg2+ which is reliant on the color change of NPs from yellow to discoloration depending on the concentration of target analyte in sample solution. The quantitative determination was performed by calculating the signal intensity of AgNPs on printed paper substrate after the introduction of Hg2+ using smartphone and RGB color detector. The mechanism for detection of Hg2+ on paper substrate is verified using UV-Vis spectrophotometry (UV-Vis), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS) and basic chemical assays. The linear range acquired for paper based colorimetric detection in the range of 40-1200 µgL-1 with limit of detection of 10 µgL-1. The results obtained using an inkjet-printed paper-based chemical sensor combined with a smartphone is validated with data of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) measurement. The advantages of paper based detection are simple, rapid, economic and can be applied at the sample sources for determination of Hg2+.

4.
Lab Chip ; 20(21): 3996-4006, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32966488

RESUMO

Presently, the use of several pesticides has been continuously rising owing to the increase in the production of food materials to meet the requirements of the growing population of the world. The safety of food materials with regards to pesticides is an important health concern for people. With this aim, we have developed a smartphone-assisted paper-based sensor impregnated with citrate capped Cu@Ag core-shell nanoparticles (NPs) for selective determination of phenthoate pesticides in water and food samples. The mechanism for selective detection is based on the high affinity of phenthoate to interact with silver NPs present on the surface of CuNPs, which results in aggregation and a change in the color of the paper device. Furthermore, the proposed mechanism and interaction of phenthoate with Cu@Ag NPs was theoretically investigated by density functional theory (DFT) using Gaussian 16.0 software. The linear range for the determination of phenthoate was found in the range of 50-1500 µg L-1, with a limit of detection of 15 µg L-1, and a 92.6 to 97.4% recovery, and the interference studies demonstrated the selectivity for the determination of the target analyte from complex sample matrices. Finally, paper impregnated with Cu@Ag was exploited for the monitoring of the phenthoate pesticide in different water and food samples. The advantages of this paper-based sensor, coupled with a smartphone readout system, are that is it is user-friendly, easy-to-use, cost-effective, and can be applied at the sample source compared to sophisticated analytical instruments.


Assuntos
Nanopartículas Metálicas , Praguicidas , Inocuidade dos Alimentos , Humanos , Limite de Detecção , Compostos Organotiofosforados , Prata , Smartphone
5.
Mikrochim Acta ; 187(3): 173, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32072273

RESUMO

An optical colorimetric and smartphone-integrated paper device (SIPD) is demonstrated for determination of As (III) in water and soil samples using sucrose modified gold nanoparticles (AuNPs/Suc) as a nanoprobe. The mechanism for determination of As(III) is experimentally validated by performing UV-Vis, transmission electron microscope (TEM), Fourier transforms infra-red spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The density function theory (DFT) calculations using B3LYP with 6-311G (2d,2p) and LANL2DZ basis sets is used to theoretically prove the mechanism for determination of As(III). In addition, the paper fabricated with AuNPs/SuC was used as a nanoprobe for quantitative determination of As(III) using smartphone and ImageJ software. Calibration plot was linear over 10-800 µgL-1 for colorimetric determination of As(III) with limit of detection (LOD) of 4 µgL-1 acquired when the absorbance ratio obtained at 594 nm/515 nm. The linearity range of 50-3000 µgL-1 with LOD of 20 µgL-1 was determined using smartphone-integrated paper device. AuNPs/Suc is successfully employed for determination of As (III) from contaminated water and soil samples in colorimetry and SIPD. Graphical abstractColorimetric and Smartphone-integrated paper device used for selective detection of arsenic from contaminated water samples using sucrose modified gold nanoparticles (AuNPs/Suc) as a sensing probe.


Assuntos
Arsênio/química , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Smartphone/instrumentação , Sacarose/química , Colorimetria/instrumentação , Humanos , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...